Heterosis for viability, fecundity, and male fertility in Drosophila melanogaster: comparison of mutational and standing variation.

نویسندگان

  • J D Fry
  • S L Heinsohn
  • T F Mackay
چکیده

If genetic variation for fitness traits in natural populations ("standing" variation) is maintained by recurrent mutation, then quantitative-genetic properties of standing variation should resemble those of newly arisen mutations. One well-known property of standing variation for fitness traits is inbreeding depression, with its converse of heterosis or hybrid vigor. We measured heterosis for three fitness traits, pre-adult viability, female fecundity, and male fertility, among a set of inbred Drosophilia melanogaster lines recently derived from the wild, and also among a set of lines that had been allowed to accumulate spontaneous mutations for over 200 generations. The inbred lines but not the mutation-accumulation (MA) lines showed heterosis for pre-adult viability. Both sets of lines showed heterosis for female fecundity, but heterosis for male fertility was weak or absent. Crosses among a subset of the MA lines showed that they were strongly differentiated for male fertility, with the differences inherited in autosomal fashion; the absence of heterosis for male fertility among the MA lines was therefore not caused by an absence of mutations affecting this trait. Crosses among the inbred lines also gave some, albeit equivocal, evidence for male fertility variation. The contrast between the results for female fecundity and those for male fertility suggests that mutations affecting different fitness traits may differ in their average dominance properties, and that such differences may be reflected in properties of standing variation. The strong differentiation among the MA lines in male fertility further suggests that mutations affecting this trait occur at a high rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits.

We have accumulated spontaneous mutations in the absence of natural selection in Drosophila melanogaster by backcrossing 200 heterozygous replicates of a single high fitness second chromosome to a balancer stock for 44 generations. At generations 33 and 44 of accumulation, we extracted samples of chromosomes and assayed their homozygous performance for female fecundity early and late in adult l...

متن کامل

Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster.

Starting from a completely homozygous population of Drosophila melanogaster, 176 lines were derived and independently maintained by a single brother-sister mating per generation. Three fitness-related traits were considered (fecundity, egg-to-pupa and pupa-to-adult viabilities). Mutational heritabilities of these traits and genetic correlations between all possible pairs were calculated from th...

متن کامل

Evidence for overdominant selection maintaining X-linked fitness variation in Drosophila melanogaster.

The role of balancing selection in maintaining genetic variation for fitness is largely unresolved. This reflects the inherent difficulty in distinguishing between models of recurrent mutation versus selection, which produce similar patterns of inbreeding depression, as well as the limitations of testing such hypotheses when fitness variation is averaged across the genome. Signatures of X-linke...

متن کامل

Genetic variation in male-induced harm in Drosophila melanogaster.

In Drosophila melanogaster, prolonged exposure to males reduces the longevity and fecundity of females. This harm arises from the effects of male courtship behaviours and the toxic side effects of the accessory gland proteins (Acps) in their seminal fluids. Here, we examine the relationship between male exposure and its harmful effect on the lifetime fitness of his mates, and quantify the genet...

متن کامل

Two tests of Y chromosomal variation in male fertility of Drosophila melanogaster.

Deficiency mapping with Y autosome translocations has shown that the Y chromosome of Drosophila melanogaster carries genes that are essential to male fertility. While the qualitative behavior of these lesions provides important insight into the physiological importance of the Y chromosome, quantitative variation in effects on male fertility among extant Y chromosomes in natural populations may ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 148 3  شماره 

صفحات  -

تاریخ انتشار 1998